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The mapped area includes Norway, Denmark, Sweden, northern Finland,
Svalbard and part of the North Sea, the Norwegian Sea, the Greenland Sea and
the western Barents Sea.

Barents Sea

70°
Information on contemporary crustal uplift, seismicity and rock stress in
addition to Neogene domes, depocentres and volcanic rocks, and postglacial
faults has been compiled in the present 1: 3 million map and in Figure 3.

s Regional neotectonics

There are seven major components of Neogene tectonics in the map area:

1. Oceanic spreading along the Mohns and Knipovich Ridges in the
Norwegian Sea.

2. Upliftand exhumation of the mainland and the Barents Sea.

3. Neogene (Mid Miocene?) reactivation of domes, arches and faults offshore
Mid-Norway (many of them originally formed in the Eocene).

4. Neogene volcanism on northern Spitsbergen and the western Barents Sea.

g 5. The offshore subsidence and deposition of large Pliocene-Pleistocene
prograding wedges.

6. The Lapland province of reverse postglacial faults.

7. Glaciation/deglaciation cycles throughout the Late Neogene and the

Quaternary.

Offshore

The six former components are included on the neotectonic map and in Figure 3.
It is still uncertain which of these elements are correlated and how they may be

North Sea linked genetically.
§ In general, Neogene tectonics seems to be related both to the ridge-push force
60° associated with the rifting along the Mohns and Knipovich Ridges, and to the
LEGEND forces set up by glacial loading and unloading. However, their relative
composite significance is not known. As an example, it is still an open question whether the
() Southern focal mechanism observed postglacial faults are caused by the ridge-push force or by the major
Wi Sz with O strain release immediately following glacial unloading, or a possible
combination of these effects. Since the formation of the offshore domes and
\@\ g,  from arches was initiated in Eocene, it is natural to relate these features to tectonic
Eﬁc:l}:glllets forces related to the plate boundary. The south Norway mountain plateau and
the Lofoten area seem to be areas of recent vertical movement (Figure 3). Riis
Scale 1:10 000 000 (1996) suggested that the Pleistocene uplift was constrained to a tectonic phase
» T 250 kilometres during the last 1 Ma correlating with change in glaciation intensity and cyclicity
b P R and modification of sedimentation and ice loads. Stuevold et al. (1992) and

Vagnes & Amundsen (1993) advocate that the intraplate deformation is an

Figure 1. Composite focal mechanism solutions derived from the inversion results for each area. The solution in . . .
g P effect of a deep-seated thermal source. The two areas of Plio-Pleistocene uplift

Finnmark is rotated with regard to the inversion result to reflect the consistent DHW direction in the data, as the

inversion in this case appears to be unstable due to the low number of solutions in this area. The western Barents occur in regions with mantle material with anomalous low seismic velocity

Sea and southern North Sea areas are plotted as pure strike-slip solutions, as the only available data there are (Bannister etal. 1991). The present uplift of these two areas can not be attributed

boreholebreakouts with L, values only. to postglacial rebound alone (Fjeldskaar et al. in press) and consequently

70° 1 indicates that the mechanism that caused the Plio-Pleistocene uplift, is still
active.

The Lapland postglacial fault province (Table 2) occurs in northern Finland
(Kujansuu 1964, Kuivamiki et al. 1998), northern Norway (Olesen 1988,

0
— 70 r——— rE——— Tt Db il = Tolgensbakk & Sollid 1988) and northern Sweden (Lundqvist & Lagerbéck
! Area i i imi ivity ulti m . s .. .
level depth . 1976, Lagerbick 1979) within a 400 x 400 km large area. The Parve Fault is up
Northern North Sea Triassic-Cretaceous rifted ~ Very high Deep Reverse to oblique-reverse E-W to 150 km in length. The Lainio-Suij avaara Fault has an escarpment of 30 m in
E—— ‘élartgm pal Hish b I;"rmal tt" St‘;llfe'Shp NWE height. The major faults are NE-SW trending reverse faults while the two minor
shore Mi1 orway retaceous-raleocene 1g cep €verse to oblique-reverse = . ooe .
il ez i S et faults, the Nordmannvikdalen and Vaalajérvi faults, have a NNW-SSE trend,
Onshore Mid Norway  Caledonian thrust belt High in northern part.  Shallow  Normal to strike-slip NNE-W that is perpendicular to the trend of the reverse faults. The Nordmannvikdalen
Earthquake swarm. . : . :
Onshore West Norway Precambrian shield, High Shallow  Oblique at the normal to EE-WNW fault in northe.{n TI'OI]’IS l‘S a normal fa:ult (Dehls ctal. in pI'CSS). The dlp of the
Thrust belt to the north strike-lip side parallel Vaalajéirvi Fault in northern Finland is not known, but recent trenching
Oslo Rift Zone Permian rift Intermediate All Normal (shallow) E-W indicates a normal fault (Kulvamakl etal.in press).
Reverse to strike-slip (deeper)
Finnmark Precambrian basement, Low Shallow Reverse NW-E . ..
Thrust belt near coat Seismicity and crustal stress
Western Barents Sea Jurassic-Tertiary rift with ~ Very low N- .
later uplift The earthquake catalogue was produced by NORSAR, and contains modern
coriam horin e WhbsieCieEssena izl Lo iz Widsamsae LB 2N and historical events from 1750 to 1999. For the period 1750 to 1890, only
margin . .
earthquakes with magnitudes greater than or equal to 4.5 are reported. For the
Table 1. Summary of the eight areas within which stress inversions have been preformed. The seimic activity period 1891 to 1965, only earthquakes with magnitudes greater than or equal to

levels used in the table are relative for Fennoscandia. Focal depths are denoted ‘deep’ when the bulk of
earthquakes occur below 15 km and ‘shallow’ when most of the earthquakes have depths less than 15 km. Similar
principles are applied for stress regimes and stress directions.

4.0 are reported. For the period 1966 to 1985, only earthquakes with magnitudes
greater than or equal to 3.0 are reported. For the period from 1986 to 1999, only
earthquakes with magnitudes greater than or equal to 2.5 are reported. The
seismicity of Norway and adjacent areas is intermediate in level, and even
though it is the highest of northwestern Europe it is still lower than in many
other stable continental (intraplate) regions (Byrkjeland et al. 2000).

Northern North Sea Onshore Mid Norway Oslo Rift area The s‘Fress indi({ators from 130 ear‘thuakes and various in situ datg (Hi.cks ‘et al.
o submitted) are included on the main map. These data are summarised in Figure
1 and Table 1, where the data within each of the areas are inverted for the best
fitting stress tensor. Modes of faulting for individual regions are displayed as
triangle plots in Figure 2. The results support the earlier finding (Bungum et al.
1991; Lindholm et al. 2000) that the maximum horizontal compressive stress
complies with the expected NW-SE trends of the ridge push force. Additional
® data from road-cut drillholes (Roberts in press) are consistent with the regional
pattern.

Normal * Reverse

Finnmark There are important deviations, however, and notably so in the Nordland region

where data from the NEONOR project have revealed an apparent 90°
rotation of the direction of maximum horizontal stress as inferred from shallow
earthquakes in the region (Hicks et al. in press). The same phenomenon is seen

65° also, albeit less pronounced, in the Sogn Graben/Tampen Spur region
(Lindholm et al. 2000). However, in Nordland this reversal is connected
i) Normal fore predominantly to shallow normal-faulting earthquakes, indicating that the
] 65° o ® significant stress component is extensional and coast-perpendicular, which,
Figure 2. Triangle plots of fault regime distribution of the earthquake focal mechanism solutions. For practical when taken together with the fact that this is a region of maximum crustal uplift
purposes, ‘pure’ soluti.ons should be contaiged Withiq the arcs at each corner. The solutions located elsewhere gradient, points to postglacial rebound as a potentially important source of
would thereby be considered to represent oblique faulting. . . . . S
stress in this region. More local stress perturbations, however, are still likely to
be involved.
In general, in situ stress directions comply with those inferred from earthquakes
(Fejerskov etal. 1995), but with important deviations in the western Barents Sea
where the ridge push force should be expected to be different in both direction
and strength, reflecting the changes in direction, morphology and rheology as
one moves from the Mohns Ridge and into the Knipovich Ridge. In the southern
North Sea, however, from where there are no earthquake focal mechanisms, the
NW-SE trend is maintained, in contrast to the Central Graben where the in situ
stress directions are more or less random and expected to be related to a
difference in the ability of the sedimentary rocks in the two regions to support
regional stress propagation.
Present rate of uplift
The present rate of uplift in Fennoscandia was calculated using data from tide-
gauges, precise levelling, GPS and gravity measurements. Uplift rates
calculated from repeated precise levelling along roads throughout Norway,
Sweden and Finland make up the bulk of the data. Levelling results from the
northern part of Finland have been used, together with the first, the second, and
a few lines from the third precision levelling of Sweden. Data from all available
Norwegian precision levelling lines were used, including the lines measured by
LEGEND surveyors from the Norwegian Railways (J. Danielsen, pers. comm. 1999). The
levelling lines are tied to tide-gauges along the coast. Additional tide gauge
records from around the Baltic Sea (Ekman 1998) helped constrain the regional
uplift pattern. Between 1966 and 1984, repeated precise gravity measurements
0 were performed on three lines across Norway, Sweden and Finland to determine
Earthquakes Altitude / Depth the rate of uplift (Mékinen et al. 1986). Permanent GPS stations located in
Magnitude Apparent postglacial gn}lft‘%‘li Jgkf: Z;Zfezls"gied Sweden and Finland have also provided measurements of uplift rate (Ekman
o 2530 uplift, mm/yr atitide) 1998).
— = Uplift data from all sources were combined and gridded using a minimum
O 3.040 N curvature method. The crustal uplift contours are mainly influenced by the
60° O 4050 Reverse postglacial fault - 2000 isostatic readjustmgnt (;aused by thc? remoyal of approximately 3000 m of ice in
central Fennoscandia since the glacial maximum.
O 5.0-6.0 N [ o0 60° Although data are scarce, it is evident that there are local disturbances in the
uplift pattern which may be caused by other tectonic forces or by stress
O 6.0-7.0 Normal postglacial fault concentration along zones of weakness (Fjeldskaar et al. in press). The rate of
e uplift is close to zero along the Norwegian coast, increasing to more than 8
7 /\/ mm/yr in central parts of the Gulf of Bothnia.
6 Submarine landslide B
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